Individual risk-factor data could help predict the next Ebola outbreak: Researchers confirm a relationship between social, economic and demographic factors and the propensity for individuals to engage in behaviors that expose them to Ebola spillover

Several years ago, a team of scientists at Lehigh University developed a predictive model to accurately forecast Ebola outbreaks based on climate-driven bat migration. Ebola is a serious and sometimes-deadly infectious disease that is zoonotic, or enters a human population via interaction with animals. It is widely believed that the source of the 2014 Ebola outbreak in West Africa, which killed more than 11,000 people, was human interaction with bats.

Now members of the team have examined how social and economic factors, such as level of education and general knowledge of Ebola, might contribute to “high-risk behaviors” that may bring individuals into contact with potentially infected animals. A focus on geographical locations with high concentrations of individuals at high-risk could help public health officials better target prevention and education resources.

“We created a survey that combined the collection of social, demographic and economic data with questions related to general knowledge of Ebola transmission and potentially high-risk behaviors,” says Paolo Bocchini, professor of civil and environmental engineering at Lehigh and one of the study’s leaders. “Our results show that it is indeed possible to calibrate a model to predict, with a reasonable level of accuracy, the propensity of an individual to engage in high-risk behaviors.”

For example, the team’s data and analyses suggested Kailahun, a town in Eastern Sierra Leone, and Kambia in the northern part of the country, as the rural districts in the country with the highest likelihood of infection spillover, based on individual risk factors accurately identifying the location, Kailahun, where the 2014 Ebola epidemic is believed to have originated.

The results are detailed in a paper “Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors” which will soon be published in PLOS ONE. Additional authors include: Lehigh University graduate student Sena Mursel, undergraduates Nathaniel Alter, Lindsay Slavit and Anna Smith; and Javier Buceta, a faculty member at the Institute for Integrative Systems Biology in Valencia, Spain.

Among the findings: young adults (ages between 18-34) and adults (ages between 34 — 50) were most at riskin the population they studied. This group constituted 77% of the investigated sample, but 86% of the respondents were at risk. In addition, those with agricultural jobs were among the most at risk: 50% of the study respondents have an agriculture-related occupation, but represent 79% of respondents at risk

“We confirmed a relationship between social, economic and demographic factors and the propensity for individuals to engage in behaviors that expose them to Ebola spillover,” says Bocchini. “We also calibrated a preliminary model that quantifies this relationship.”

Source: Read Full Article